

University of Global Village (UGV), Barishal

ETABS I (Building Super Structure)

Content of Laboratory Course

Prepared By

Rubieyat Bin Ali Assistant Professor & HOD Department of Civil Engineering University of Global Village (UGV)

Ronok Islam Assistant Design Engineer Quantam Builders and Engineering Ltd. (QBEL)

Program: B.Sc. in CE

.

BASIC COURSE INFORMATION

Course Title	ETABS I (Building Super Structure)
Course Code	CE 0732-2202
Credits	01
CIE Marks	30
SEE Marks	20
Exam Hours	2 hours (Semester Final Exam)
Level	4 th Semester

ETABS I (Building Super Structure)

COURSE CODE: CE 0732-2104

Semester End Exam Hours 2

CREDIT:01 TOTAL MARKS:50 CIE MARKS: 30 SEE MARKS: 20

Course Learning Outcomes (CLOs): After completing this course successfully, the students will be able to-

- **CLO 1** Understand concepts of Structural Design of Reinforced concrete members.
- **CLO 2** Analyze various structural components of building column, beam, stair, shear wall and slab.
- CLO 3 Develop intellectual communication skills through working in groups in performing in different load assigning (dead, live, earthquake, wind etc.) and various Serviceability limit Check.
- **CLO 4** Generate the detailing of various structural components of buildings and bridges.

SL	Content of Course	Hrs	CLOs
1	Modeling of Structure and Material Assigning, Stair Drawing	10	CLO1
2	Dead, live, Earthquake and wind load assigning	20	CLO3
3	Load combinations assign Member Meshing and Assigning Diaphragm	20	CLO2,
5	Load comoniations assign, Member Mesning and Assigning Diaphragin	20	CLO4
Δ	Analysis and Checking	5	CLO1,
4	Analysis and Checking	5	CLO3
5	Serviceability Check (Torsion, P-Delta, Soft-storey, Storey drift and lateral	10	
5	displacement)	10	CLOI
6	Cost-Effective Design of Building, Reinforcement Detailing of Structure	10	CLO3
7	Lab Test, Viva, Quiz, Overall Assessment, Skill Development Test (Competency)	10	CLO1

Text Book:

1. Design of Concrete Structures by Arthur H. Nilson, David Darwin, Charles W. Dolan (Mc Graw Hill) – 13th edition.

- 2. Design of Concrete Structures by Arthur H. Nilson 7th edition.
- 3. Design of Reinforced Concrete by Jack C. McCormac, Russell H. Brown 9th edition
- 4. The American Society of Civil Engineers, code-7-05
- 5. User's Guide ETABS® 2016
- 6. ETABS User's Manual
- 7. Gazetted-BNBC-2020-Enhanced-file-published-by-Dr.-Khan-Mahmud-Amanat-Follow-Design-Integrity-for-Civil-Engg-info.

ASSESSMENT PATTERN

CIE- Continuous Internal Evaluation (30 Marks)

SEE- Semester End Examination (20 Marks)

SEE- Semester End Examination (40 Marks) (should be converted in actual marks (20))

Bloom's Category	Tests
Remember	05
Understand	07
Apply	08
Analyze	07
Evaluate	08
Create	05

CIE- Continuous Internal Evaluation (100 Marks) (should be converted in actual marks (30))

Bloom's Category Marks	Lab Final	Lab Report	Continuous lab	Presentation &	External Participation in
(out of 100)	(30)	(10)	performance	Viva (10)	Curricular/Final Project Exhibition
			(30)		(10)
Remember/Imitation	05		05	02	
Understand/manipulation	05	05	05	03	
Apply/ Precision	05		05		Attendance
Analyze/Articulation	05		05		10
Evaluate/Naturalisation	05	05	05		
Create	05		05	05	5

Couse plan specifying content, CLOs, teaching learning and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning	Assessment	Corresponding
		Strategy	Strategy	CLOs
1	Desig introduction about ETADS software	Lecture, discussion,	Quiz, Lab Test	
•	Dasic Infounction about ETADS software	Experiment		CLUI
2	Modeling of Structure	Oral Presentation,	Lab Report	
_		Project Exhibition	Assessment, viva	CLOS
3-4	Motorial Assigning	Presentation, Field	Skill Development	
	Waterial Assigning	visit	Test	CLO2, CLO4
5		Lecture, discussion,	Quiz, Lab Test	
	Stair Drawing	Experiment,		CLO1, CLO3
		Demonstration		
6	Deed and live load assign	Oral Presentation,	Lab Report	
Ū	Deau and five load assign	Project Exhibition	Assessment, viva	CLUI
7_8		Presentation, Field	Skill Development	
/ 0	Earthquake and wind load assign	visit	Test	CLO3
9	Load combinations assign	Lecture, discussion,	Quiz, Lab Test	
	Load comonations assign	Experiment		CLO2, CLO4

Couse plan specifying content, CLOs, teaching learning and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning	Assessment	Corresponding
		Strategy	Strategy	CLOs
10-11	Mombor Maching and Assigning Diaphragm	Lecture, discussion,	Quiz, Lab Test	
10 11	Member Meshing and Assigning Diaphragin	Experiment		CLUI
12	Analysis and Chasking	Oral Presentation,	Lab Report	
	Anarysis and Checking	Project Exhibition	Assessment, viva	CLOS
13	Somiagability Chaolz (Torgion and D Dalta)	Presentation, Field	Skill Development	
10	Serviceability Check (Torsion and F-Delta)	visit	Test	CLO2, CLO4
		Lecture, discussion,	Quiz, Lab Test	
	Serviceability Check (Soft-storey and storey drift)	Experiment,		CLO1, CLO3
14		Demonstration		
15	Cost-Effective Design of Building, Details Discussion	Oral Presentation,	Lab Report	
10	on BNBC-2020/ASCE-7-05	Project Exhibition	Assessment, viva	CLUI
16	Reinforcement Detailing of Structure (Column, beam,	Presentation, Field	Skill Development	
	stair, slab, shear wall)	visit	Test	CLUS
17	Lab Test, Viva, Quiz, Overall Assessment, Skill	Lecture, discussion,	Quiz, Lab Test	
1/	Development Test (Competency)	Experiment		CLO2, CLO4

Basic introduction about ETABS software

Week 1 Pages 8-16

Training Outline

- Understanding Architectural Drawing
- Modeling Building Structure in ETABS
- Materials Assigning
- Property Assigning
- Load Assigning
- Model Analysis
- Serviceability Check
- Design and Detailing of Building
- Discussion on BNBC 2020/ASCE-7-05

Types of Structural Design

The entire process of structural planning and design requires not only imagination and conceptual thinking but also sound knowledge of practical aspects, such as recent design codes and bye-laws, backed up by ample experience, institution and judgment. It is emphasized that any structure to be constructed must satisfy the need efficiency for which it is intended and shall be durable for its desired life span. Thus, the design of any structure is categorizes into following two main types:-

Functional DesignStructural Design

Functional Design

The structure to be constructed should primarily serve the basic purpose for which it is to be used and must have a pleasing look. The building should provide happy environment inside as well as outside. Therefore, the functional planning of a building must take into account the proper arrangements of room/halls to satisfy the need of the client, good ventilation, lighting, acoustics, unobstructed view in the case of community halls, cinema theatres, etc.

Structural Design

Once the form of the structure is selected, the structural design process starts. Structural design is an art and science of understanding the behavior of structural members subjected to loads and designing them with economy and elegance to give a safe, serviceable and durable structure.

12

Stages in Structural Design

The process of structural design involves the following stages :-

- 1) Structural planning
- 2) Action of forces and computation of loads
- 3) Methods of analysis
- 4) Member design
- 5) Detailing, Drawing and Preparation of schedules

Structural planning

After getting an architectural plan of the buildings, the structural planning of the building frame is done. This involves determination of the following :-

Position and orientation of columns
 Positioning of beams
 Spanning of slabs
 Layouts of stairs
 Selecting proper type of footing.

Position and Orientation of Columns

Following are some of the building principles, which help in deciding the columns positions :-

- Columns should preferably be located at (or) near the corners of a building, and at the intersection of beams/walls.
- Select the position of columns so as to reduce bending moments in beams.
- > Avoid larger spans of beams.
- > Avoid larger center-to-center distance between columns.
- Edge & Corner columns to be located at minimum distance from property line so that footing can avoid eccentricity.

Introduction of ETABS

ETABS is an engineering software product that caters to multi-story building analysis and design.

ETABS stands for Extended Three-Dimensional Analysis of Building System.

Latest version ETABS 24

Maximum used version ETABS 16

Modelling of Structure

Week 2 Pages 17-23

Skill Details

- Understanding architectural plan
- Importing of Floor Plan from Auto-cad
- Checking distances from grids
- Inserting Storey Heights

Work Procedure

- Select «File-New Model». Choose «Use Buil-in Settings». Here select Display Units as «Metric SI» (no need to select Concrete Design Code as «TS 500-2000» since we will not use design option).
- First enter the values in the «New Model Quick Template» window for the Uniform Grid Spacing and Simple Story Data:

d Dimensions (Plan)			Story Dime	ensions		
Uniform Grid Spacing			Sim	ple Story Data		
Number of Grid Lines in X Direction		6	Nu	mber of Stories	8	
Number of Grid Lines in Y Direction		4	Typ	pical Story Height	3	m
Spacing of Grids in X Direction		5 /	n Bot	ttom Story Height	4	7
Spacing of Grids in Y Direction		5	n			
Specify Grid Labeling Options		Grid Labels				
Custom Grid Spacing			O Cus	itom Story Data	\sim	
Specify Data for Grid Lines		Edit Grid Data	Spi	ecify Custom Story Data		5dit Story Data
a Structural Objects	-		-		(
+++++++	I-н-Т	H-H-H				
	± ±		0 🖬 8			
	<u>і — н — і</u>	ИН				
+++++++++		Staggered Truss	Flat Slab	Flat Slab with	Waffle Slab	Two Way or Ribbed Slab
Blank Grid Only	Steel Deck			and an interest of the second second		readed and a
Blank Grid Only	Steel Deck			Permoter Deama		

Next select «Custom Grid Spacing» and click here (Edit Grid Data) to make the correction for the only span length of 3 m (shown in the next slide)!

Finally select this part to define the slab properties (shown two slides after)! Note that all slabs are two-way slabs (the loads of slabs are transferred to the beams in both directions).

id System Name		Story	Range Option			Cilck to Modily.	/Show:			
G1		0	Default			R	eference Points			
ntem Origin			User Specified			B	eference Planes			0000
Global X	0	6 C	Top Story			Options				
Global Y	0 1	(0)	Bottom Story			Bubble Size	1250	mm	8	
Retation										
ectangular Grids	d Data as Ordinates	C) Display Grid Dat	a as Sp	acing	Grid Color Y Grid Data		Quick Sta	nt New Rectangular (Ginds
ectangular Grids	d Data as Ordinates	C) Display Grid Dat	a as Sp	acing	Grid Color Y Grid Data	V Ordinata (m)	Quick Sta	t New Rectangular	Ginds
ectangular Grids Display Grid X Grid Data Grid ID A	d Data as Ordinates X Ordinate (m)	eg C Visible Yes) Display Grid Dat Bubble Loc End	a as Sp	acing	Grid Color Y Grid Data Grid ID 1	Y Ordinate (m)	Quick Sta Visible Ves	t New Rectangular (Bubble Loc	Grids
ectangular Grids Display Gri X Grid Data Grid ID A B	d Data as Ordinates X Ordinate (m) 0 5	eg C Visible Yes Yes) Display Grid Dat Bubble Loc End End	la as Sp	acing Add	Grid Color Y Grid Data Grid ID 1 2	Y Ordinate (m) 0 5	Quick Sta Visible Yes Yes	t New Rectangular Bubble Loc Start Start	Ginds Add
ectangular Grids Oisplay Gri X Grid Data Grid ID A B C	d Data as Ordinates X Ordinate (m) 0 5 10	eg Visible Yes Yes Yes) Display Grid Dat Bubble Loc End End End	a as Sp	acing Add Delete	Grid Color Y Grid Data Grid ID 1 2 3	Y Ordinate (m) 0 5 8	Quick Sta Visible Yes Yes Yes	t New Rectangular (Bubble Loc Start Start Start Start	Grids Add Delete
ectangular Grids Display Grids X Grid Data Grid ID A B C D	d Data as Ordinates X Ordinate (m) 0 5 10 15	eg Visible Yes Yes Yes Yes) Display Grid Dat Bubble Loc End End End End	a as Sp	acing Add Delete	Grid Color Y Grid Data Grid ID 1 2 3 4	Y Ordinate (m) 0 5 8 13	Quick Sta Visible Yes Yes Yes Yes Yes	t New Rectangular Bubble Loc Start Start Start Start Start	Grids Add Delete
ectangular Grids Display Gri X Grid Data Grid ID A B C D E	d Data as Ordinates X Ordinate (m) 0 5 10 15 20	eg Visible Yes Yes Yes Yes Yes	Display Grid Dat Bubble Loc End End End End End End	la as Sp	Add Delete Sort	Grid Color Y Grid Data Grid ID 1 2 3 4	Y Ordinate (m) 0 5 8 13	Quick Sta Visible Yes Yes Yes Yes	t New Rectangular (Bubble Loc Start Start Start Start Start	Grids Add Delete Sort

Correct these values as 8 m. and 13 m. to account for 3m span length at the mid-span of the structure along the ydirection.

Click OK at the end!

• Definition of the slab and structural system properties. After completing the data for all properties, click OK!

	Overhangs	Structural System Properties			These structural
No	Along X Direction	Column	ConcCol	~	properties are
hangs	Left Edge Distance	Beam X	ConcBm	~	automatically assigned.
abs!		Beam Y	ConcBm	×	If not, assign these
	Along Y Direction	Slab	Slab1	×	selections
	Rbs Unselect - No Rbs block joist floor systems-no ribs!	Load Dead Load Pattem Dead Load (Additional) Live Load Pattem Live Load	Dead 1.2 Live 2	✓ kN/m² ✓ kN/m²	The additional dead load and live load are entered here!
	Restraints at Bottom	Floor Diaphragm Rigidity			
	None O Pinned Fixed	Rigid	Semi-Rigid	🔿 No Diaphragm	
	support conditions	Rig	gid diaphra	agms were a	assumed
All			, d accignor	d for the her	
All are	e assumed as fixed at 👘 📊	OK Cancel and	u assigned	a for the bea	am+slab

• Consequently, the model will be formed and you should obtain the following (plan and 3-D) views of the model.

Material Assigning

Week 3-4 Pages 24-50

24

Skill Details

- Assigning grade of concrete and steel
- Inserting the value of E, Poison's ratio and Density of RC
- Assigning Physical, Geometry (Dimension), Material property of each element
- Drawing frame Sections (column & beam)
- Drawing shell sections (Slab and shear wall)
- Framing of Model

Process of Creating Grid System & Building Story

Continue...

Defining Materials

Concrete Materials

Continue...

Material Name and Type Material Name Material Type	Conrrete		Provide Required Strength of
Material Type	Concrete, isotropic		Concrete
Specified Concrete Compressive	Strength f'c 4000	lb/in ²	
Lightweight Concrete			
Shear Strength Reduction F	actor		
	K Cancel		
(
(

Rebar Materials

Continue...

aterial Name and Type			Dres	uide Descrived Streventh of
Material Name	Rebar		Pro	vide Required Strength of
Material Type	Rebar, Uniaxial			Rebar
esign Properties for Rebar Materials				
Minimum Yield Strength, Fy	60000	lb/in²		
Minimum Tensile Strength, Fu	90000	lb/in²		
Expected Yield Strength, Fye	66000	lb/in²		
Expected Tensile Strength, Fue	99000	lb/in²		
01				
OK	Cancel			

Defining Section Properties (Frame Section)

Continue...

Defining Section Properties (Slab Section)

Continue...

Draw column, Beam, Slab & Partition Wall as per architectural Drawing.
• In the «Property/Stiffness Modification Factors» window, enter the corresponding coefficients (as shown below) for the effective rigidities of seismic code. Click OK twice!

Property/Stiffness Modifiers for Analy Membrane f11 Direction	o.5				General Data		
Membrane f22 Direction	0.5		Wall Droperties		Property Name	P25	
Membrane f12 Direction	0.5		M marridgenes		Property Type	Specified	~
Bending m11 Direction	0.25		Wall Property	Click to:	Wall Material	C30	· .
Bending m22 Direction	0.25		P35 Wall1	Add New Property	Notional Size Data	Modify/Show Notional Size	
Bending m12 Direction	1	7	ARTIN'S	Add Copy of Property	Modeling Type	Sheil-Thin	~
Shear v13 Direction	1			Modify/Show Property	Modifiers (Currently User Specified)	Modfy/Show	
Shear v23 Direction	1			Delete Property	Display Color	Change	
Mass	1				riopery noise	Modity/ Snow	-4
Weight	1	7		OK	Property Data		
				Cancel	Thickness	250	mm
ОК	Cancel				ОК	Cancel	

Similarly define the shear wall with a width of 250 mm. You may do this by simply choosing «Add Copy of Property» on «Wall Properties». Here all you have to change is the name (from P35 to P25) and thickness (from 350 to 250 mm) as shown above. Click OK twice! Now that we have to shear wall sections, namely P25 and P35.

In order to define the slab, select «Define-Section Properties-Slab Sections». Here choose «Slab1» and select «Modify/Show Property» in the «Slab Properties» window. In this way, we change the existing «Slab1» section to fit our slab properties. You may change the «Property Name» to «d14» to reflect 14 cm slab thickness. Selct C30 for «Slab Material». «Membrane» should be assigned for the «Modeling Type». Enter slab thickness as 140 mm. Here we are not going to modify sectional properties (inertia, etc.) of the slabs, since all we need is the calculation of the weight of slab according to its thickness (14 cm) and unit weight of concrete (25 kN/m³) (this load will be added to the additional dead load, 1.2 kN/m² and will be transferred to the beams by ETABS). Click OK twice!

+ × ∫ I∰ Plan View - S	itory8 - Z = 25 (m)	Slab Property Data			
s Detailing		General Data Property Name	d14		1
		Slab Material	C30	~	
Slab Properties		X Modeling Type	Modify/Show Notional Membrane	Size	
Slab Property	Click to:	Modifiers (Currently Default)	Modify/Show		
Plank1 Rbbed1	Add New Property	Display Color Property Notes	Chan Modify/Show	ge	
Stab1 Add Copy of Property		Use Special One-Way Load D			
	Modity/Show Property	Property Data			
	Gente Propets	Туре	Slab	~	
	OK Cancel	Thickness	140		mm
01.0	** * *	-*	Cancel		

- Now we finished defining the sections of columns and beam. At this step we will draw the shear walls which do
 not exist in our model at this stage. The length of shear wall in between A2-A3 (also F2-F3) is 3.25 m and the one
 in between C4-D4 (also C1-D1) is 5.25 m. These lengths are provided in the example. We have to delete the
 columns and beams at these shear wall locations. Besides, we have to form joints at a 0.125 m distance of each
 end (*replicate*) so as to provide a 0.25 m larger length given above.
- First select «All Stories» at the bottom right corner. This will enable us to do the same operation in all stories when we do it in one story. Then select the region between A2-A3 as shown here. Then simply click «Delete» in your computer to delete the beams and columns within this region. You will see the result as you here.

 You should do the same operation for the region between axes F2-F3, C1-D1 and C4-D4. Consequently you should see your model in 3-D as shown below. Note that the selection should be done starting (clicking first) from top-left corner up to bottom-right corner to select only the members within this region. The reverse selection will choose all the members that your selection touches.

 In order to replicate the nodes by 0.125 m at each end of A2-A3 span, get a closer look at this region by using «Rubber Band Zoom».
 The joints are invisible as default and we should make them visible. You should select «Set Display Options» of for this purpose, unselect «Joint Objects-Invisible» and click OK! Select the joint at the intersection of A and 3 axes. Then click «Edit-Replicate». In the replicate window, write 0.125 for dy and click OK. Then select the joint at the intersection of A and 2 axes. Do the same operation, but write -0.125 for dy.

- Do the same «replicate» operation for all F2-F3, C1-D1 and C4-D4 spans. Here in case of C1-D1 and C4-D4 spans, you should enter 0.125 and -0.125 in «dx» not in «dy». For example, you should write -0.125 for dx while replicating the joint at the intersection of C and 1 axes. In all these operations, you may use «Restore Full View» to see full model in plan after each time you zoom to the region that you work on.
- In order to draw the shear walls, select «Draw-Draw Floor/Wall Objects-Draw Walls (Plan)». Then click on the first replicated joint (close to A2) and then the second replicated joint (close to A3). Then right-click to end the drawing.

42

• Repeat the same drawing to form other three shear walls. At the end you should see your model as you see here.

Now that we are ready to assign all sections (that we defined) to the corresponding members. Before that, we will assign the «master» and «similar» stories. So that any section assignment which we do for the «master» story will also be applied to the «similar» stories. The column and shear wall dimensions change after the 2nd story level. Also the column dimensions change once again after the 5th story level. Therefore there will be three groups of stories which are (1-2), (3-4-5) and (6-7-8). In each group, one of the stories will be defined as «master» (shown in bold) and others as «similar». This will be accomplished by selecting «Edit-Edit Stories and Grid Systems...». In the «Edit Story and Grid System Data», you should choose «Modify/Show Story Data». The «Story Data» window will pop up which you should modify as you see here, Click OK twice!

ny Data		Story Data								
Story8 Story7	Model/Show Sime Data									
Story5 Story4 Story3			Story	Height m	Bevelon	Master Story	Smilar To	Splice Story	Splice Height	Story Color
Story2 Story1	12		Story®	3	25	No	Story6	No	0	
Bate	Quick Add Story		Story7	3	22	No	Story6	No	0	
	Set Story Names to Default		Story6	3	19	Yes	None	No	0	
			Story5	3	16	No	Ston/3	No	0	
			Story4	3	13	No	Story3	No	0	_
i Systema		• •	Story3	3	10	Yes	None	No	0	
G1	Add New Grid System		Story2	3	7	No	Story 1	No	0	
	Modify/Show Grid System		Story1	4	4	Yes	None	No	0	
	Delete Gird System		Base		0					
	Copy Existing Grid System									
	Add from .dxf/dwg File									
	Add New from .did/dwg File	Note: Right	ht Olick on Grid for Opti	ons						
	Refresh View					Refresh View				лл
	OK Carcel				OK		Cancel		-	++

 Let us first assign «B25x60» section to the beams. We have to select all beams first. In order to do that, click «Select-Object Type». The «Select by Object Type» window will appear. Here you should choose «Beams», click «Select» and «Close». This will select all beams only. Then click «Assign-Frame-Section Property», choose «B25x60» section in the following window and click OK! Now «B25x60» section is assigned to all beams.

- Now we will assign column sections. Initially, we will assign «C40x40» section to all columns. Then change the column sections in the other similar stories (i.e. stories 1-2 and stories 3-4-5). First let us select all columns in the same way that we selected beams by using «Select-Object Type». In the «Select by Object Type» window choose «Columns», click «Select» and «Close». Then use «Assign-Frame-Section Property», choose «C40x40» section in the following window and click OK! Now «C40x40» section is assigned to all columns.
- Then in order to choose the columns in other similar stories, first click «Select-Get Previous Selection» which will select all columns once again. Then activate «Plan View» on the left side of your screen, if not active already. Choose «View-Show Selected Objects Only» which will show you only columns in plan. By using up-down arrows, go to «Plan View Story1-Z=4 (m)». Select «Similar Stories» instead of «One Story» at the bottom right corner. Then choose all columns in the plan view by using cursor.

- Now only the columns in the 1st and 2nd stories are selected. Then use «Assign-Frame-Section Property», choose «C50x50» section in the following window and click OK! Now «C50x50» section is assigned to all columns in the similar 1st and 2nd stories. If you can not see the new assigned column names on the 3-D view, activate «3-D View» on the right side of your screen and simply click r in order to refresh view. Now you should be able to see the modified column names. Do the same operations for all columns in the similar 3rd, 4th and 5th stories. While doing this, you should go to the «Plan View Story3 Z=10 (m)» and select all columns in plan view and then assign column section «C45x45» to your selections. Now that the assignment of column sections is finished, you may choose «View-Show All Objects» in «Plan View».
- Now, choose the shear walls at the 1st and 2nd stories from the 3-D view window. Simply click on the shear walls at the 1st story and the upper shear wall at the 2nd story will be directly selected. Do this for all shear walls on four sides of the building. During this selection, you may need to rotate your 3-D model by using
 At the end you should see «8 Shells, 32 Edges selected» at the bottom left corner of your screen. Then choose «Assign-Shell-Wall Section». In the «Sheel Assignment» window choose «P35» and click OK!

	Joint	• 3 • 0 Se	dol 👚 🗣 🙀 🗹 🗗 • 🗇 • □ ction Properties
Y	Shell	1 2	Slab Section
¢	Link	• *	Deck Section
*	Tendon	• 11	Wall Section
5		1001	Onening

Do the same operations to select the shear walls at the upper similar stories (stories 3-4-5 and 6-7-8) and assign «P25» wall section to your selection. Now that we have finished assignment of all shear wall sections.

• We should assign a pier label for each individual shear wall (each one at four sides of the building). In order to do that, first select «One Story» at the bottom right corner of your screen. Then click escape and click OK in order to set your view for the frame along 1-1 axes.

 Then select all shear walls in «Elevation View – 1» and choose «Assign-Shell-Pier Label». On the «Shell Assignment - Pier Label» window, choose «P1» and click OK!

Then go to the «Elevation View – 4» by using «up-down arrows». Choose all shear walls on 4-4 axes. Then choose «Assign-Shell-Pier Label». On the «Shell Assignment - Pier Label» window, choose «Modify/Show Definitions».
 «Pier Labels» window will pop up, here write P2 for «Wall Piers», click «Add New Name» and OK twice! Do the same operation for the shear walls on A-A (label: P3) and F-F (label: P4) axes. You can also go to the «Elevation View-A» and «Elevation View-F» by using «up-down arrows». You can convert your view on the right side of your screeen into 3-D view again by clicking 3d.

Next we will change all support conditions at the bottom of the building as fixed. In order to that, go to the «Plan View - Base – Z=0 (m)» from the plan view on the left by using «up-down arrows». Then choose «Assign-Joint-Restraints». On the «oint Assignment-Restraints» window simply click fixed support from «Fast Restraints» or place a tick for all conditions in «Restraints in Global Directions». Click OK!

Assi	gn Analy:	ze Display	Design	Detailing	Options	Tools	Help
*	Joint		•	💦 Restrai	nts		
1	Frame			👔 Spring	s		
	Shell		► j		agms		

✓ Translation X ✓ Rotation about X ✓ Translation Y ✓ Rotation about Y ✓ Translation Z ✓ Rotation about Z st Restraints ✓	Restraints in Global Dire	ctions
 ✓ Translation Y ✓ Translation Z ✓ Rotation about Z st Restraints ✓ ▲ 	Translation X	Rotation about X
Translation Z Rotation about Z	✓ Translation Y	Rotation about Y
st Restraints	Translation Z	Rotation about Z
	ast Restraints	

Stair Drawing

Week 5 Pages 51-54

Skill Details

- Drawing landing slab and frames with material assigning
- Drawing waist slab

Skill Details

To insert a stair in ETABS, you can divide the frame, insert a beam, and then replicate the stairs to other floors. You can also watch a video tutorial on how to model a staircase in ETABS.

Steps

Divide the frame so that a beam can be inserted between the columns
 Insert the beam at an offset for the landing slab
 Select the stairs and replicate them to other floors
 View the model in 3D or rendered view

Video File (How to insert a stair)

Dead and Live Load Assign

Week 6 Pages 56-76

Skill Details

- Assigning main wall load
- Assigning Partition wall load
- Assigning Parapet wall load
- Assigning floor finished
- Assigning live loads according to BNBC/ACI guidelines

Assigning Load

Dead Load

Definition of Dead Load

According to BNBC 2020, Part-6, Chapter-2, Section-2.2.2 "Dead Load is the vertical load due to the weight of permanent structural and nonstructural components and attachments of a building such as walls, floors, ceilings, permanent partitions and fixed service equipment etc."

Calculation of Floor Finish Load

•	Clay Tiles	=	0.6	(kN/m^2)
•	Cement Plaster (Ceiling)	=	0.287	(kN/m^2)
			0.000	(1) 1 ()

• Cement Plaster (Floor) = 0.230 (kN/m²)

Total Load

=	1.117	(kN/m^2)
=	23.3	(psf)
\approx	25	(psf)

Calculation of Partition Wall Load

Wall Load = Equivalent Height of Wall X Weight Per Unit Area of Wall

Equivalent Height of Wall = (Area of Wall – Area of Window)/ Length of Wall = $\frac{H x L - 2 x h x l}{L}$

61

Continue...

Weight Per Unit Area of Wall :

•	Brick masonry work, excl. plaster: burnt clay, per 100 mm Cement paster (Both Side)	=	1.910 0.460	(kN/m ²) (kN/m ²)
Tot	al Load	۲ II II ۲	2.37 49.5	(kN/m ²) (psf) (psf)
		\sim	50	(psi)

Defining Dead Load

Assigning Wall Load

Continue...

Assigning Floor Finish Load

Continue...

Live Load 68

Definition of Live Load

According to BNBC 2020, Part-6, Chapter-2, Section-2.3.2 "Live load is the load superimposed by the use or occupancy of the building not including the environmental loads such as wind load, rain load, earthquake load or dead load."

Defining Live Load

Assigning Live Load

Continue...

- In this part we will define dead and live loads. The equivalent static seismic forces will not be defined at this stage. We should first make a modal analysis and obtain the fundamental vibration periods along the x and y directions. This information will be required while we estimate the equivalent static seismic forces.
- Choose «Define-Load Patterns» and here select «Dead» load. Write «G» instead of «Dead» and click «Modify Load». Self weight multiplier is «1» since the weight of the structural members will be calculated by multiplying the dimensions of members with the unit weight of concrete (25 kN/m³) and used for the dead loads. Next, select «Live» and change its name as «Q» in the same way. Click OK! X

		Colf Walaht	Auto	CICK TO.
Load	Туре	Multiplier	Lateral Load	Add New Load
	Dead	~ 1	×	Modify Load
	Dead	1		
	Live	0		Modify Lateral Load
				Delete Load
				OK Const
				OK Carr

Define Load Patterns

 Then choose «Define-Load Cases». In «Load Cases» window, select «Dead» and click «Modify/Show Case». «Load Case Data» window will appear. Here change «Load Case Name» as «G» and click OK! Do the same for «Live» load case to change its name as «Q». At the end, you will see the following window. Click OK!

Cases			Click to:
Load Case Name	Load Case Type		Add New Case
i	Linear Static		Add Copy of Case
	Linear Static		Modify/Show Case
		*	Delete Case
		*	Show Load Case Tree
			ОК
			Capad

As mentioned before, the self-weight of all structural members are estimated by ETABS and included in the case «G». However, the weight of infill walls are not considered in these calculations since infill walls are not considered as structural members and not included in our model. We have to assign distributed loads on the beams to represent the additional weight of infill walls (8 kN/m on the exterior beams and 6.5 kN/m on the interior beams). In order to do this, first change your selection as «All Stories» from the bottom right corner of your window. In the plan view, go to the «Plan View - Story1 – Z=4 (m)» using «up-down arrows». Then select the beams at the exterior circumference of the building and check all story beams are selected as you do this (since «All Stories» is selected) (totally 12*8=96 beams will be selected). Choose «Assign-Frame Loads-Distributed». In the «Frame Load Assignment-Distributed» window, write «8» for the «Uniform Load» when «G» was selected for

the «Load Pattern Name».

Assi	gn Analyze Display	/ Design	Detailing Options Tools Help
	Joint	•	1 • 🕤 • 🕤 🖸 📲 두 🏷 C
1	Frame) Joint Restraints
首	Shell	•	
X	Link	•	
~	Tendon	•	
:	Joint Loads	۰.	
in	Frame Loads		💥 Point
1	Shell Loads	•	🖉 Distributed
0 ¥	Tendon Loads		* Temperature

Load P	attern Name		G		Ý	L.	
Load Type a	and Direction	Noments		Options O A	dd to Existing Loa	ds	
Direction of Load Application Gravity		Gravity	Beplace Existing Delete Existing I		eplace Existing Lo elete Existing Loa	Loads	
Transzoidal	Loads	2		3.	4.		
Hapezoida	1.						
Distance	0	0.25	0.75		1		
Distance	1. 0	0.25	0.75		0	kN/m	
Distance Load	0 0 Relative D	0.25 0	0.75 0 4 O	Absolute [0 Distance from End	k.N/m	
Distance Load	0 0 Relative D	0.25	0.75	Absolute [0	kN/m	

In the next stage, select all interior beams in the plan view. Do the same operations to define distributed load of 6.5 kN/m this time.

- In the next stage, select all interior beams in the plan view. Do the same operations to define distributed load of 6.5 kN/m this time.
- There should not be any infill walls over the beams at the roof level. Therefore, we should delete the distributed infill wall loads on these beams. Change your selection preference as «One Story» from the bottom right corner, if it is not so (if the distributed loads are shown on your 3D model, you may not see that part where you change your selection preference; in that case simply choose «Display-Undeformed Shape»). Go to the «Plan View Story8 Z=25 (m)» using «up-down arrows». Then select all beams on plan view. Check if only the beams at the last story are selected from the 3-D view. If so, choose «Assign-Frame Loads-Distributed» and select «Delete Existing Loads» and click OK! This will delete all the distributed loads that are defined on the beams at the roof level.

ame Load Assignmen	t - Distributed			*	
Load Pattern N	ame	G	~		
Load Type and Direc Forces Direction of Load	ction O Moments Application Gravity	Opti	Add to Existing Loads Replace Existing Loads Delete Existing Loads		
Trapezoidal Loads Distance	1.	2. 3.	4.		
Load) Relative Distance from	End-I O Absolu	te Distance from End-I		
Uniform Load Load	- I	ОК	Close Apply	Í.	7

Earthquake and Wind Load Assign

Week 7-8

Pages 78-104

Wind Load

Defining Wind Load

igure 6.2.6	External Pressure Coefficients, Cp main wind force resisting system -
	Method 2 (All Heights)

Location	Basic Wind	Location	Basic Wind
	Speed (m/s)		Speed (m/s)
Angarpota	47.8	Lalmonirhat	63.7
Bagerhat	77.5	Madaripur	68.1
Bandarban	62.5	Magura	65.0
Barguna	80.0	Manikganj	58.2
Barisal	78.7	Meherpur	58.2
Bhola	69.5	Maheshkhali	80.0
Bogra	61.9	Moulvibazar	53.0
Brahmanbaria	56.7	Munshiganj	57.1
Chandpur	50.6	Mymensingh	67.4
Chapai Nawabganj	41.4	Naogaon	55.2
Chittagong	80.0	Narail	68.6
Chuadanga	61.9	Narayanganj	61.1
Comilla	61.4	Narsinghdi	59.7
Cox's Bazar	80.0	Natore	61.9
Dahagram	47.8	Netrokona	65.6
Dhaka	65.7	Nilphamari	44.7
Dinajpur	41.4	Noakhali	57.1
Faridpur	63.1	Pabna	63.1
Feni	64.1	Panchagarh	41.4
Gaibandha	65.6	Patuakhali	80.0
Gazipur	66.5	Pirojpur	80.0
Gopalganj	74.5	Rajbari	59.1
Habiganj	54.2	Rajshahi	49.2
Hatiya	80.0	Rangamati	56.7
Ishurdi	69.5	Rangpur	65.3
Joypurhat	56.7	Satkhira	57.6
Jamalpur	56.7	Shariatpur	61.9
Jessore	64.1	Sherpur	62.5
Jhalakati	80.0	Sirajganj	50.6
Jhenaidah	65.0	Srimangal	50.6
Khagrachhari	56.7	St. Martin's Island	80.0
Khulna	73.3	Sunamganj	61.1
Kutubdia	80.0	Sylhet	61.1
Kishoreganj	64.7	Sandwip	80.0
Kurigram	65.6	Tangail	50.6
Kushtia	66.9	Teknaf	80.0
Lakshmipur	51.2	Thakurgaon	41.4

82

2.4.6 Exposure

For each wind direction considered, the upwind exposure category shall be based on ground surface roughness that is determined from natural topography, vegetation, and constructed facilities.

2.4.6.1 Wind directions and sectors

For each selected wind direction at which the wind loads are to be evaluated, the exposure of the building or structure shall be determined for the two upwind sectors extending 45° either side of the selected wind direction.

The exposures in these two sectors shall be determined in accordance with Sections 2.4.6.2 and 2.4.6.3 and the exposure resulting in the highest wind loads shall be used to represent the winds from that direction.

2.4.6.2 Surface roughness categories

A ground surface roughness within each 45° sector shall be determined for a distance upwind of the site as defined in Sec 2.4.6.3 from the categories defined in the following text, for the purpose of assigning an exposure category as defined in Sec 2.4.6.3.

Surface Roughness A: Urban and suburban areas, wooded areas, or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger.

Surface Roughness B: Open terrain with scattered obstructions having heights generally less than 9.1 m. This category includes flat open country, grasslands, and all water surfaces in cyclone prone regions.

Surface Roughness C: Flat, unobstructed areas and water surfaces outside cyclone prone regions. This category includes smooth mud flats and salt flats.

2.4.6.3 Exposure categories

Exposure A: Exposure A shall apply where the ground surface roughness condition, as defined by Surface Roughness A, prevails in the upwind direction for a distance of at least 792 m or 20 times the height of the building, whichever is greater.

Exception: For buildings whose mean roof height is less than or equal to 9.1 m, the upwind distance may be reduced to 457 m.

Exposure B: Exposure B shall apply for all cases where Exposures A or C do not apply.

Exposure C: Exposure C shall apply where the ground surface roughness, as defined by Surface Roughness C, prevails in the upwind direction for a distance greater than 1,524 m or 20 times the building height, whichever is greater. Exposure C shall extend into downwind areas of Surface Roughness A or B for a distance of 200 m or 20 times the height of the building, whichever is greater.

For a site located in the transition zone between exposure categories, the category resulting in the largest wind forces shall be used.

Exception: An intermediate exposure between the preceding categories is permitted in a transition zone provided that it is determined by a rational analysis method defined in the recognized literature.

2.4.6.4 Exposure category for main wind-force resisting system

Buildings and Other Structures: For each wind direction considered, wind loads for the design of the MWFRS determined from Figure 6.2.6 shall be based on the exposure categories defined in Sec 2.4.6.3.

Low-Rise Buildings: Wind loads for the design of the MWFRSs for low-rise buildings shall be determined using a velocity pressure q_h based on the exposure resulting in the highest wind loads for any wind direction at the site where external pressure coefficients GC_{pf} given in Figure 6.2.10 are used.

2.4.6.5 Exposure category for components and cladding

Components and cladding design pressures for all buildings and other structures shall be based on the exposure resulting in the highest wind loads for any direction at the site.

2.4.6.6 Velocity pressure exposure coefficient

Based on the exposure category determined in Sec 2.4.6.3, a velocity pressure exposure coefficient K_z or K_h , as applicable, shall be determined from Table 6.2.11. For a site located in a transition zone between exposure categories that is near to a change in ground surface roughness, intermediate values of K_z or K_h between 3 those shown in Table 6.2.11, are permitted, provided that they are determined by a rational analysis method defined in the recognized literature.

Occupancy Category ¹ or Importance Class	Non-Cyclone Prone Regions and Cyclone Prone Regions with V = 38-44 m/s	Cyclone Prone Regions with V > 44 m/s
I	0.87	0.77
П	1.0	1.00
ш	1.15	1.15
IV	1.15	1.15

Table 6.2.12: Wind Directionality Factor, K_d

Structure Type	Directionality Factor K _d *	Structure Type	Directionality Factor K_d •
Buildings		Solid Signs	0.85
Main Wind Force Resisting System	0.85	Open Signs and Lattice Framework	0.85
Cladding Arched Roofs	0.85	Trussed Towers Triangular, square, rectangular	0.85
Chimneys, Tanks, and Similar Structures		All other cross section	0.95
Square	0.90		
Hexagonal	0.95		
Round	0.95		

* Directionality Factor K_d has been calibrated with combinations of loads specified in Sec 2.7. This factor shall only be applied when used in conjunction with load combinations specified in Sections 2.7.2 and 2.7.3.

2.4.7 Topographic Effects

2.4.7.1 Wind speed-up over hills, ridges and escarpments

Wind speed-up effects at isolated hills, ridges, and escarpments constituting abrupt changes in the general topography located in any exposure category shall be included in the design when buildings and other site conditions and locations of structures meet all of the following conditions:

- (i) The hill, ridge, or escarpment is isolated and unobstructed upwind by other similar topographic features of comparable height for 100 times the height of the topographic feature (100 H) or 3.22 km, whichever is less. This distance shall be measured horizontally from the point at which the height H of the hill, ridge, or escarpment is determined.
- (ii) The hill, ridge, or escarpment protrudes above the height of upwind terrain features within a 3.22 km radius in any quadrant by a factor of two or more.
- (iii) The structure is located as shown in Figure 6.2.4 in the upper one-half of a hill or ridge or near the crest of an escarpment.
- $(iv)H/L_h \ge 0.2$
- (v) H is greater than or equal to 4.5 m for Exposures B and C and 18.3 m for Exposure A.

2.4.7.2 Topographic factor

The wind speed-up effect shall be included in the calculation of design wind loads by using the factor K_{zt} :

$$K_{zt} = (1 + K_1 K_2 K_3)^2 \tag{6.2.5}$$

Where, K_1 , K_2 , and K_3 are given in Figure 6.2.4. If site conditions and locations of structures do not meet all the conditions specified in Sec 2.4.7.1 then $K_{zt} = 1.0$.

Gust Effect Factor 2.4.8

2.4.8.1 Rigid structures

For rigid structures as defined in Sec 2.1.3, the gust-effect factor shall be taken as 0.85 or calculated by the formula:

$$G = 0.925 \frac{1+1.7g_Q l_2 Q}{1+1.7g_V l_2}$$
(6.2.6)
$$l_{\bar{z}} = c \left(\frac{10}{\bar{z}}\right)^{1/6}$$
(6.2.7)

Where, \overline{b} and $\overline{\alpha}$ are constants listed in Table 6.2.10.

2.4.8.3 Rational analysis

In lieu of the procedure defined in Sections 2.4.8.1 and 2.4.8.2, determination of the gust-effect factor by any rational analysis defined in the recognized literature is permitted.

2.4.8.4 Limitations

Where combined gust-effect factors and pressure coefficients $(GC_{pi}, GC_{pi}, GC_{pi})$ are given in figures and tables, the gust-effect factor shall not be determined separately.

Where, $I_{\overline{z}}$ = the intensity of turbulence at height \overline{z} where \overline{z} = the equivalent height of the structure defined as 0.6*h*, but not less than z_{min} for all building heights *h*. z_{min} and c are listed for each exposure in Table 6.2.10; g_Q and the value of g_v shall be taken as 3.4. The background response Q is given by

$$Q = \sqrt{\frac{1}{1+0.63\left(\frac{B+h}{L_2}\right)^{0.63}}}$$
(6.2.8)

Where, B, h are defined in Sec 2.1.4; and L_z = the integral length scale of turbulence at the equivalent height given by

$$L_{\vec{x}} = l \left(\frac{\vec{x}}{10}\right)^{\vec{e}} \tag{6.2.9}$$

In which I and $\overline{\epsilon}$ are constants listed in Table 6.2.10.

2.4.8.2 Flexible or dynamically sensitive structures

For flexible or dynamically sensitive structures as defined in Sec 2.1.3 (natural period greater than 1.0 second), the gust-effect factor shall be calculated by

$$G_f = 0.925 \left(\frac{1 + 1.7 I_{\mathbb{Z}} \sqrt{g_Q^2 Q^2 + g_R^2 R^2}}{1 + 1.7 g_v I_{\mathbb{Z}}} \right)$$
(6.2.10)

The value of both g_0 and g_V shall be taken as 3.4 and g_R is given by

$$g_R = \sqrt{2\ln(3600n_1)} + \frac{0.577}{\sqrt{2\ln(3600n_1)}}$$
(6.2.11)

R, the resonant response factor, is given by

$$R = \sqrt{\frac{1}{\beta}} R_n R_h R_B (0.53 + 0.47 R_L)$$
(6.2.12)

$$R_n = \frac{1.47N_1}{(1+10.3N_1)^{5/3}}$$
(6.2.13)

$$N_1 = \frac{n_1 L_2}{\Xi}$$
(6.2.14)

$$\frac{1-2}{\bar{V}_2}$$
 (6.2.14)

$$R_{l} = \frac{1}{n} - \frac{1}{2n^{2}} (1 - e^{-2\eta}) \text{ for } \eta > 0 \qquad (6.2.15a)$$

$$R_l = 1$$
 for $\eta = 0$ (6.2.15b)

Where, the subscript l in Eq. 6.2.15 shall be taken as h, B, and L, respectively, where h, B, and L are defined in

Sec 2.1.4.

$$\begin{split} n_1 &= \text{building natural frequency} \\ R_l &= R_h \text{ setting } \eta = 4.6 n_1 h / \overline{V}_Z \\ R_l &= R_B \text{ setting } \eta = 4.6 n_1 B / \overline{V}_Z \end{split}$$

 $\overline{V}_{z} = \overline{b} \left(\frac{z}{10}\right)^{\alpha} V$

$$R_l = R_L$$
 setting $\eta = 15.4 n_1 L / \overline{V}_Z$

 β = damping ratio, percent of critical

 \overline{V}_{π} = mean hourly wind speed at height \overline{z} determined from Eq. 6.2.16.

(6.2.16)

87

Earthquake Load

Defining Earthquake Load

Table 6.2.19: Response Reduction Factor, Deflection Amplification Factor and Height

Limitations for Different Structural Systems

Seismic Force-Resisting System	Response Reduction Factor, R	System Overstrength Factor, Ω _o	Deflection Amplification Factor, C _d	Seismic Design Category B	Seismic Design Category C	Seismic Design Category D
				He	ight limit	(m)
A. BEARING WALL SYSTEMS (no frame)						
1. Special reinforced concrete shear walls	5	2.5	5	NL	NL	50
2. Ordinary reinforced concrete shear walls	4	2.5	4	NL	NL	NP
 Ordinary reinforced masonry shear walls 	2	2.5	1.75	NL	50	NP
4. Ordinary plain masonry shear walls	1.5	2.5	1.25	18	NP	NP

Seismic Force-Resisting System	Response Reduction Factor, R	System Overstrength Factor, Ω _o	Deflection Amplification Factor, C _d	Seismic Design Category B	Seismic Design Category C	Seismic Design Category D
				He	ight limit ((m)
B. BUILDING FRAME SYSTEMS (with bracing or shear wall)						
 Steel eccentrically braced frames, moment resisting connections at columns away from links 	8	2	4	NL	NL	50
2. Steel eccentrically braced frames, non-moment- resisting, connections at columns away from links	7	2	4	NL	NL	50
3. Special steel concentrically braced frames	6	2	5	NL	NL	50
4. Ordinary steel concentrically braced frames	3.25	2	3.25	NL	NL	11
5. Special reinforced concrete shear walls	6	2.5	5	NL	NL	50
6. Ordinary reinforced concrete shear walls	5	2.5	4.25	NL	NL	NP
7. Ordinary reinforced masonry shear walls	2	2.5	2	NL	50	NP
8. Ordinary plain masonry shear walls	1.5	2.5	1.25	18	NP	NP
C. MOMENT RESISTING FRAME SYSTEMS (no shear wall)						
1. Special steel moment frames	8	3	5.5	NL	NL	NL
2. Intermediate steel moment frames	4.5	3	4	NL	NL	35
3. Ordinary steel moment frames	3.5	3	3	NL	NL	NP

92

Seismic Force-Resisting System	Response Reduction Factor, R	System Overstrength Factor, Ω_o	Deflection Amplification Factor, C _d	Seismic Design Category B	Seismic Design Category C	Seismic Design Category D
				He	ight limit	(m)
4. Special reinforced concrete moment frames	8	3	5.5	NL	NL	NL
5. Intermediate reinforced concrete moment frames	5	3	4.5	NL	NL	NP
5. Ordinary reinforced concrete moment frames	3	3	2.5	NL	NP	NP
D. DUAL SYSTEMS: SPECIAL MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES (with bracing or shear wall)						
1. Steel eccentrically braced frames	8	2.5	4	NL	NL	NL
2. Special steel concentrically braced frames	7	2.5	5.5	NL	NL	NL
3. Special reinforced concrete shear walls	7	2.5	5.5	NL	NL	NL
4. Ordinary reinforced concrete shear walls	6	2.5	5	NL	NL	NP
E. DUAL SYSTEMS: INTERMEDIATE MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES (with bracing or shear wall)						
1. Special steel concentrically braced f rames	6	2.5	5	NL	NL	11
2. Special reinforced concrete shear walls	6.5	2.5	5	NL	NL	50
3. Ordinary reinforced masonry shear walls	3	3	3	NL	50	NP

Seismic Force-Resisting System	Response Reduction Factor, R	System Overstrength Factor, Ω_o	Deflection Amplification Factor, C _d	Seismic Design Category B He	Seismic Design Category C ight limit	Seismic Design Category D (m)
4. Ordinary reinforced concrete shear walls	5.5	2.5	4.5	NL	NL	NP
F. DUAL SHEAR WALL- FRAME SYSTEM: ORDINARY REINFORCED CONCRETE MOMENT FRAMES AND ORDINARY REINFORCED CONCRETE SHEAR WALLS	4.5	2.5	4	NL	NP	NP
G. STEEL SYSTEMS NOT SPECIFICALLY DETAILED FOR SEISMIC RESISTANCE	3	3	3	NL	NL	NP

Notes:

1. Seismic design category, NL = No height restriction, NP = Not permitted. Number represents maximum allowable height (m).

- Dual Systems include buildings which consist of both moment resisting frame and shear walls (or braced frame) where both systems resist the total design forces in proportion to their lateral stiffness.
- 3. See Sec. 10.20 of Chapter 10 of this Part for additional values of R and C_d and height limits for some other types of steel structures not covered in this Table.
- 4. Where data specific to a structure type is not available in this Table, reference may be made to Table 12.2-1 of ASCE 7-05.

Table 6.2.14: Description of Seismic Zones

Seismic Zone	Location	Seismic Intensity	Seismic Zone Coefficient, 2
1	Southwestern part including Barisal, Khulna, Jessore, Rajshahi	Low	0.12
2	Lower Central and Northwestern part including Noakhali, Dhaka, Pabna, Dinajpur, as well as Southwestern corner including Sundarbans	Moderate	0.20
3	Upper Central and Northwestern part including Brahmanbaria, Sirajganj, Rangpur	Severe	0.28
4	Northeastern part including Sylhet, Mymensingh, Kurigram	Very Severe	0.36

Table 6.2.15: Seismic Zone Coefficient Z for Some Important Towns of Bangladesh

Town	Z	Town	Z	Town	Z	Town	Z
Bagerhat	0.12	Gaibandha	0.28	Magura	0.12	Patuakhali	0.12
Bandarban	0.28	Gazipur	0.20	Manikganj	0.20	Pirojpur	0.12
Barguna	0.12	Gopalganj	0.12	Maulvibazar	0.36	Rajbari	0.20
Barisal	0.12	Habiganj	0.36	Meherpur	0.12	Rajshahi	0.12
Bhola	0.12	Jaipurhat	0.20	Mongla	0.12	Rangamati	0.28
Bogra	0.28	Jamalpur	0.36	Munshiganj	0.20	Rangpur	0.28
Brahmanbaria	0.28	Jessore	0.12	Mymensingh	0.36	Satkhira	0.12
Chandpur	0.20	Jhalokati	0.12	Narail	0.12	Shariatpur	0.20
Chapainababganj	0.12	Jhenaidah	0.12	Narayanganj	0.20	Sherpur	0.36
Chittagong	0.28	Khagrachari	0.28	Narsingdi	0.28	Sirajganj	0.28
Chuadanga	0.12	Khulna	0.12	Natore	0.20	Srimangal	0.36
Comilla	0.20	Kishoreganj	0.36	Naogaon	0.20	Sunamganj	0.36
Cox's Bazar	0.28	Kurigram	0.36	Netrakona	0.36	Sylhet	0.36
Dhaka	0.20	Kushtia	0.20	Nilphamari	0.12	Tangail	0.28
Dinajpur	0.20	Lakshmipur	0.20	Noakhali	0.20	Thakurgaon	0.20
Faridpur	0.20	Lalmanirhat	0.28	Pabna	0.20		
Feni	0.20	Madaripur	0.20	Panchagarh	0.20		

Figure 6.2.24 Seismic zoning map of Bangladesh

Table 6.2.16: Site Dependent Soil Factor and Other Parameters Defining Elastic Response Spectrum

•				
Soil type	S	<i>Tz</i> (s)	Tc(s)	T₂(s)
SA	1.0	0.15	0.40	2.0
SB	1.2	0.15	0.50	2.0
SC	1.15	0.20	0.60	2.0
SD	1.35	0.20	0.80	2.0
SE	1.4	0.15	0.50	2.0

Site	Occupancy Category I, II and III				Occupancy Category IV			
Class	Zone 1	Zone 2	Zone 3	Zone 4	Zone 1	Zone 2	Zone 3	Zone 4
SA	В	С	С	D	С	D	D	D
SB	В	С	D	D	С	D	D	D
SC	В	С	D	D	С	D	D	D
SD	С	D	D	D	D	D	D	D
SE, S_1 , S_2	D	D	D	D	D	D	D	D

Figure 6.2.26 Normalized design acceleration response spectrum for different site classes.

Cable 6.2.17: Importance Factors for Buildings and Structures for Earthquake design					
Occupancy Category	Importance factor I				
I, II	1.00				
ш	1.25				
IV	1.50				

Table 6.C.1: Spectral Response Acceleration Parameter S_S and S₁ for Different Seismic Zone

Parameters	Zone-1	Zone-2	Zone-3	Zone-4
Ss	0.3	0.5	0.7	0.9
Si	0.12	0.2	0.28	0.36

Table 6.C.2: Site Coefficient Fa for Different Seismic Zone and Soil Type

Soil Type	Zone-1	Zone-2	Zone-3	Zone-4
SA	1.0	1.0	1.0	1.0
SB	1.2	1.2	1.2	1.2
SC	1.15	1.15	1.15	1.15
SD	1.35	1.35	1.35	1.35
SE	1.4	1.4	1.4	1.4

Table 6.C.5 Spectral Response Acceleration Parameter S_{D1} for Different Seismic Zone and Soil Type

Soil Type	Zone-1	Zone-2	Zone-3	Zone-4
SA	0.08	0.133	0.186	0.24
SB	0.12	0.2	0.28	0.36
SC	0.138	0.23	0.322	0.414
SD	0.216	0.36	0.504	0.648
SE	0.14	0.233	0.326	0.42

Table 6.C.3: Site Coefficient F_v for Different Seismic Zone and Soil Type

Soil Type	Zone-1	Zone-2	Zone-3	Zone-4
SA	1.0	1.0	1.0	1.0
SB	1.5	1.5	1.5	1.5
SC	1.725	1.725	1.725	1.725
SD	2.7	2.7	2.7	2.7
SE	1.75	1.75	1.75	1.75

Table 6.C.4: Spectral Response Acceleration Parameter S_{DS} for Different Seismic Zone and Soil Type

Soil Type	Zone-1	Zone-2	Zone-3	Zone-4
SA	0.2	0.333	0.466	0.6
SB	0.24	0.4	0.56	0.72
SC	0.23	0.383	0.536	0.69
SD	0.27	0.45	0.63	0.81
SE	0.28	0.466	0.653	0.84

Base Shear Calculation

2.5.7.1 Design base shear

The seismic design base shear force in a given direction shall be determined from the following relation:

$$V = S_a W$$
 (6.2.37)

Where,

 S_a = Lateral seismic force coefficient calculated using Eq. 6.2.34 (Sec 2.5.4.3). It is the design spectral acceleration (in units of g) corresponding to the building period T (computed as per Sec 2.5.7.2).

W= Total seismic weight of the building defined in Sec 2.5.7.3

The spectral acceleration for the design earthquake is given by the following equation:

$$S_a = \frac{2}{3} \frac{ZI}{R} C_s \tag{6.2.34}$$

Where,

- S_a = Design spectral acceleration (in units of g) which shall not be less than 0.67 βZIS
- β = Coefficient used to calculate lower bound for S_a . Recommended value for β is 0.11
- Z = Seismic zone coefficient, as defined in Sec 2.5.4.2
- *I* = Structure importance factor, as defined in Sec 2.5.5.1
- R = Response reduction factor which depends on the type of structural system given in Table 6.2.19. The ratio $\frac{1}{R}$ cannot be greater than one.

 C_s = Normalized acceleration response spectrum, which is a function of structure (building) period and soil type (site class) as defined by Equations 6.2.35a to 6.2.35d.

$$C_{S} = S\left(1 + \frac{T}{T_{B}}(2.5\eta - 1)\right) \text{ for } 0 \le T \le T_{B}$$
 (6.2.35a)

$$C_s = 2.5 S\eta$$
 for $T_B \le T \le T_C$ (6.2.35b)

$$C_s = 2.5 S \eta \left(\frac{T_c}{T}\right) \quad \text{for} \quad T_c \le T \le T_D$$
 (6.2.35c)

$$C_{s} = 2.5 \, s \eta \left(\frac{T_{C} T_{D}}{T^{2}} \right) \quad \text{for} \quad T_{D} \leq T \leq 4 \, sec$$
 (6.2.35d)

 C_s depends on *S* and values of T_{B_s} T_C and T_{D_s} (Figure 6.2.25) which are all functions of the site class. Constant C_s value between periods T_B and T_C represents constant spectral acceleration.

- S = Soil factor which depends on site class and is given in Table 6.2.16
- *T* = Structure (building) period as defined in Sec 2.5.7.2
- T_B = Lower limit of the period of the constant spectral acceleration branch given in Table 6.2.16 as a function of site class.
- T_C = Upper limit of the period of the constant spectral acceleration branch given in Table 6.2.16 as a function of site class
- T_D = Lower limit of the period of the constant spectral displacement branch given in Table 6.2.16 as a function of site class
- η = Damping correction factor as a function of damping with a reference value of η =1 for 5% viscous damping. It is given by the following expression:

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55 \tag{6.2.36}$$

Where, ξ is the viscous damping ratio of the structure, expressed as a percentage of critical damping. The value of η cannot be smaller than 0.55.

The building period T (in sec) may be approximated by the following formula:

 $T = C_t (h_n)^m$ (6.2.38)

Where,

 h_n = Height of building in metres from foundation or from top of rigid basement. This excludes the basement storeys, where basement walls are connected with the ground floor deck or fitted between the building columns. But it includes the basement storeys, when they are not so connected. C_t and mare obtained from Table 6.2.20

Table 6.2.20: Values for Coefficients to Estimate Approximate Period

Structure type	G	т	
Concrete moment-resisting frames	0.0466	0.9	Note: Consider moment
			resisting frames as frames
Steel moment-resisting frames	0.0724	0.8	which resist 100% of
			seismic force and are not
Eccontrically braced steal frame	0.0721	0.75	enclosed or adjoined by
Eccentrically braced steer frame 0.07	0.0731	.0731 0.73	components that are more
			rigid and will prevent the
All other structural systems	0.0488	0.75	frames from deflecting
			under seismic forces.

2.5.7.3 Seismic weight

Seismic weight, *W*, is the total dead load of a building or a structure, including partition walls, and applicable portions of other imposed loads listed below:

- (a) For live load up to and including 3 kN/m², a minimum of 25 percent of the live load shall be applicable.
- (b) For live load above 3 kN/m², a minimum of 50 percent of the live load shall be applicable.
- (c) Total weight (100 percent) of permanent heavy equipment or retained liquid or any imposed load sustained in nature shall be included.

Where the probable imposed loads (mass) at the time of earthquake are more correctly assessed, the designer may go for higher percentage of live load.

Video File (How to insert wind and earthquake load)

Load Combination Assign

Week 9 Pages 106-119

Load Combination

Assigning Load Combination

Load Combination

2.7.3.1 Basic combinations

- 1. 1.4(D+F)
- 2. $1.2(D + F + T) + 1.6(L + H) + 0.5(L_r \text{ or } R)$
- 3. $1.2D + 1.6(L_r \text{ or } R) + (L \text{ or } 0.8W)$
- 4. $1.2D + 1.6W + L + 0.5(L_r \text{ or } R)$
- 5. 1.2D + 1.0E + 1.0L
- 6. 0.9D + 1.6W + 1.6H
- 7. 0.9D + 1.0E + 1.6H

The seismic load effect, E, shall be determined in accordance with the following:

 For use in load combination 5 in Section 2.7.3 or load combination 5 and 6 in Section 2.7.2, *E* shall be determined in accordance with the following equation,

 $E = E_b + E_v$

 For use in load combination 7 in Section 2.7.3 or load combination 8 in Section 2.7.2, E shall be determined in accordance with following equation,

 $E = E_b - E_v$

Where,

E =total seismic load effect

 E_h = effect of horizontal seismic forces as defined in Sections 2.5.7 or 2.5.9

 E_v = effect of vertical seismic forces as defined in Section 2.5.13.2

2.5.13.1 Horizontal earthquake loading, Eh

The horizontal seismic load effect, E_h , shall be taken as the horizontal load effects of seismic base shear *V* (Sec 2.5.7 or 2.5.9) or component forces F_c (Sec 2.5.15).

The directions of application of horizontal seismic forces for design shall be those which will produce the most critical load effects. Earthquake forces act in both principal directions of the building simultaneously. In order to account for that,

(a) For structures of Seismic Design Category B, the design horizontal seismic forces are permitted to be applied independently in each of two orthogonal directions and orthogonal interaction effects are permitted to be neglected

(b) Structures of Seismic Design Category C and D shall, as a minimum, conform to the requirements of (a) for Seismic Design Category B and in addition the requirements of this Section. The structure of Seismic Design Category C with plan irregularity type V and Seismic Design Category D shall be designed for 100% of the horizontal seismic forces in one principal direction combined with 30% of the horizontal seismic forces in the orthogonal direction. Possible combinations are:

"±100% in x-direction ±30% in y-direction" or

"±30% in x-direction ±100% in y-direction"

The combination which produces most unfavourable effect for the particular action effect shall be considered. This approach may be applied to equivalent static analysis, response spectrum analysis and linear time history analysis procedure.

2.5.13.2 Vertical earthquake loading, E_v

The maximum vertical ground acceleration shall be taken as 50 percent of the expected horizontal peak ground acceleration (PGA). The vertical seismic load effect E_v may be determined as:

$$E_{v} = 0.50(a_{h})D$$

(6.2.56)

Where,

 a_h = expected horizontal peak ground acceleration (in g) for design = (2/3)ZS

D = effect of dead load, S = site dependent soil factor (see Table 6.2.16).

<u>Load Combination</u> (Considering Orthogonal Direction)

♦BNBC-1 : 1.4DL **♦**BNBC-2 : 1.2DL+1.6LL **♦**BNBC-3 : 1.2DL+1.0LL **♦**BNBC-4 : 1.2DL+0.8Wx **♦**BNBC-5 : 1.2DL-0.8Wx **♦BNBC-6** : 1.2DL+0.8Wy **♦BNBC-7** : 1.2DL-0.8Wy **◆**BNBC-8 : 1.2DL+1.0LL+1.6Wx **♦**BNBC-9 : 1.2DL+1.0LL-1.6Wx **♦**BNBC-10 : 1.2DL+1.0LL+1.6Wy *****BNBC-11 : 1.2DL+1.0LL-1.6Wy

BNBC-12: 1.2DL+1.0LL+1.0Ex+0.3Ey+1.0Ev
BNBC-13: 1.2DL+1.0LL+1.0Ex-0.3Ey+1.0Ev
BNBC-14: 1.2DL+1.0LL-1.0Ex+0.3Ey+1.0Ev
BNBC-15: 1.2DL+1.0LL-1.0Ex-0.3Ey+1.0Ev
BNBC-16: 1.2DL+1.0LL+1.0Ey+0.3Ex+1.0Ev
BNBC-17: 1.2DL+1.0LL+1.0Ey-0.3Ex+1.0Ev
BNBC-18: 1.2DL+1.0LL-1.0Ey+0.3Ex+1.0Ev
BNBC-19: 1.2DL+1.0LL-0Ey-0.3Ex+1.0Ev

♦BNBC-20 : 0.9DL+1.6Wx **◆**BNBC-21 : 0.9DL-1.6Wx **♦**BNBC-22 : 0.9DL+1.6Wy **♦**BNBC-23 : 0.9DL-1.6Wy *****BNBC-24 : 0.9DL+1.0Ex+0.3Ey-1.0Ev *****BNBC-25 : 0.9DL+1.0Ex-0.3Ey-1.0Ev *****BNBC-26 : 0.9DL-1.0Ex+0.3Ey-1.0Ev *****BNBC-27 : 0.9DL-1.0Ex-0.3Ey-1.0Ev *****BNBC-28 : 0.9DL+1.0Ey+0.3Ex-1.0Ev *****BNBC-29 : 0.9DL+1.0Ey-0.3Ex-1.0Ev *****BNBC-30 : 0.9DL-1.0Ey+0.3Ex-1.0Ev *****BNBC-31 : 0.9DL-1.0Ey-0.3Ex-1.0Ev

Load Combination

(Without Considering Orthogonal Direction)

♦BNBC-1 : 1.4DL **♦**BNBC-2 : 1.2DL+1.6LL **♦**BNBC-3 : 1.2DL+1.0LL **♦**BNBC-4 : 1.2DL+0.8Wx **♦**BNBC-5 : 1.2DL-0.8Wx **♦BNBC-6** : 1.2DL+0.8Wy **♦**BNBC-7 : 1.2DL-0.8Wy **♦**BNBC-8 : 1.2DL+1.0LL+1.6Wx **◆**BNBC-9 : 1.2DL+1.0LL-1.6Wx **♦**BNBC-10 : 1.2DL+1.0LL+1.6Wy *****BNBC-11 : 1.2DL+1.0LL-1.6Wy

♦BNBC-12 : 1.2DL+1.0LL+1.0Ex+1.0Ev *****BNBC-13 : 1.2DL+1.0LL-1.0Ex+1.0Ev *****BNBC-14 : 1.2DL+1.0LL+1.0Ey+1.0Ev *****BNBC-15 : 1.2DL+1.0LL-1.0Ey+1.0Ev **♦**BNBC-16 : 0.9DL+1.6Wx **♦**BNBC-17 : 0.9DL-1.6Wx **♦BNBC-18**: 0.9DL+1.6Wy *****BNBC-19 : 0.9DL-1.6Wy **♦**BNBC-20 : 0.9DL+1.0Ex-1.0Ev **♦**BNBC-21 : 0.9DL-1.0Ex-1.0Ev **♦**BNBC-22 : 0.9DL+1.0Ey-1.0Ev *****BNBC-23 : 0.9DL-1.0Ey-1.0Ev

 In the final stage, let us see how to define a load combination for «1.4G+1.6Q». In order to do that, choose «Define-Load Combinations» and click «Add New Combo» on «Load Combinations» window. The «Load Combination Data» will pop up. Here, change «Load Combination Name» as «1.4G+1.6Q». «Combination Type» is «Linear Add». «G» should already be defined with a scale factor of «1». Change «Scale Factor» which is «1» into «1.4». Then click «Add». Change the added load name as «Q» and «Scale Factor» as «1.6». You should see your window as follows and click OK twice! Now that the load combination «1.4G+1.6Q» is defined.

Load Combination Name	146+160					
Logo compiliation reality	Plant Plant					
Combination Type	Linear Add ~ ~ Modify/Show Notes					
Notes						
Auto Combination	No					
Sefine Combination of Load Case	:/Combo Results					
Load Name	Scale Factor	1				
G	1.4	Add				
a	1.6	Delete				

• ANALYSIS: We may now ready to run the analysis by clicking [] or choosing «Analyze-Run Analysis» after you should save your model!

Member Meshing and Assign Diaphragm

Week 10-11

Pages 120-127

Skill Details

- Meshing the wall and shell
- Assigning rigid/semi-rigid diaphragm
- Assigning joint and shell diaphragm

• Then choose «Assign-Shell-Wall Auto Mesh Options» and then «Mesh Object into» in the following window. Write 4 for «Vertical» and 4 for «Horizontal», and click OK! At the end, your 3-D model should be as follows.

an meaning options				
) Default: No Meshin	g for Straight Walls /	and Auto Rectangula	r Meshing fo	or Curved Walls
Mesh Object into	4	Vertical and	4	Horizontal
) Auto Rectangular M] Add Restraints on E	esh dge if Comens have	Restraints		
) Auto Rectangular M] Add Restraints on E	esh dge if Comers have	Restraints		

18- Automatic mesh of wall

E Automatic Rectangular Mesh Options (for Walls)

0K

Approximate Maximum Mesh Size

auto rectangular meshing.

0.5

Cancel

Reset Defaults

Mesh Size

Important Note

Defining Diaphragms

Let's see what are the differences between rigid and semi-rigid in ETABS

- The figure above shows slab having assigned rigid diaphragm in left and semi-rigid in right. Also the seismic loads applied are shown.
- The image is not of high quality but what's important is in case of rigid diaphragm seismic load is applied only at the center of mass of the slab.
- But for semi rigid diaphragm seismic loads are applied at each nodes in the slab.
- Remember when we discussed how assigning rigid diaphragm can reduce the number of degrees of freedom.
- Since there is only one degree of freedom for translation along x axis in case of rigid diaphragm, ETABS automatically applies the load at one point, the point being the center of mass.
- This makes the ETABS easier to carry out the analysis.
- But it is important to note that base shear in each case is same.

 The masses and weights of all stories will be estimated by ETABS by taking total dead loads and a portion of live loads. This portion of live loads (n) depends on the type of building (usage of building). In your case, you should define this live load participation factor (n) as 0.3 for an office or residential building. This will be done by choosing «Define-Mass Source» and selecting «Modify/Show Mass Source». In the «Mass Source Data» window, select «Specified Load Patterns» and unselect all other «Mass Source» options. Then, write «1» for «G» «Load Pattern» on the right side, click «Add». Next, write «0.3» for «Q» «Load Pattern» on the right side, click «Add» and click OK twice!

Mass Source Name MsSrc1	Load Pattern Multiplier
	Q ~ 0.3 Add
Element Self Mass	G 1 Modify
Additional Mass	Delete
Specified Load Patterns	
Adjust Diaphragm Lateral Mass to Move Mass Centroid by:	Mass Options
This Ratio of Disphragm Width in X Direction	Include Lateral Mass
This Ratio of Disphragm Width in Y Direction	Include Vertical Mass
	Lump Lateral Mass at Story Levels

Analysis and Checking

Week 12 Pages 128-134

Skill Details

- Checking and fixing the error
- Run the model
- Checking axial force bending moment diagram
- Checking torsional force bending moment diagram
- Checking slab shear force bending moment diagram
- Checking area of reinforcement of each member

• After the analysis is completed, you should see the deformed shape of your model on 3-D view as follows.

 In order to obtain fundamental periods of the structure, activate 3-d view window (if not), click on pen «Deformed Shape Window». Here choose «Mode» and click OK!

O Case	O Con	bo	۲	Mode	
Modal	~	Mode Number	~	1	•
icaling					
Automatic					
O User Defined		Scale Factor	ſ		
Contour Options					
Draw Contours on	Objects				
Contour Component					
Show Contours f	or	Displacement L	DC .		-
Contour Range					
Minimum Value for	Contour Ran	ge			mm
Maximum Value for	r Contour Rær	ge 🗌			mm
options	Hinge	State Colored D	ota ar	e For	
Wire Shadow	۲	B, C , D and E F	oints		
Cubic Curve		10, LS and CP /	locep	tance Po	ints

• On the 3-D view window, «Mode Shape» corresponding to «Mode 1» will appear. Here,

3-D View Mode Shape (Modal) - Mode 1 - Period 1.123 Movement Start Animation

Now that we understand that the first mode corresponds to the lateral movement along y-direction, this value becomes to be our fundamental period along this direction. $T_1^{(Y)}=1.123$ sec.

If you click here, you may change the mode shape from the first to the second mode (which is lateral movement along x axis). The period at the top changes into a value which will be defined as the fundamental period along x-axis (T₁^(X)). Check next slide!

You may start animation to understand the mode of vibration, which is clearly the displacement along the y-direction in this 1st mode. This means that a dominant portion of mass contributes to the movement along y-direction in the first mode of vibration! (You may check this from the mass percentage of each vibration mode from the tables of results-no need at this stage!)

If you start the animation in the second mode, you will see that it corresponds to the lateral movement along the x-axis. Therefore, the fundamental period along the x direction, T₁^(X)=0.829 sec.

Cancel

OK

 In order to obtain story masses, you should choose «Display-Show Tables». On «Choose Tables» window, click «Tables-Model-Structure Data-Mass Summary-Mass Summary by Story». In the window that pops up, the mass of each story is shown in units of kg. You should calculate weight by using these mass vales (multiply by 9.81 m/s² and divide into 1000).

C laste	14 4	1 /9	🕨 🕨 Reload	I Apply	l.
Control Assignments Structure Data P I Material List		Story	UX kg	UY kg	UZ kg
Mass Summary		Story8	271846.78	271846.78	0
Mass Summary by Story Mass Summary by Diaphragm	1	Story7	402252.54	402252.54	0
Assembled Joint Masses		Story6	402252.54	402252.54	0
l Design		Story5	404355.71	404355.71	0
		Story4	406955.99	406955.99	0
		Story3	406955.99	406955.99	0
		Story2	420741.27	420741.27	0
		Story1	443643.46	443643.46	0
		Base	27978.46	27978.46	0

seismic forces!

Serviceability Check

Week 13-14

Pages 136-146

Skill Details

- Checking the torsional irregularity
- Detecting and fixing problems
- Providing torsional reinforcement in beam
- Checking the load-deformation behavior of structure
- Detecting and fixing problems
- Checking the stiffness irregularities of structure
- Detecting and fixing problems
- Checking the storey drift of structure
- Detecting and fixing problems

Serviceability Check

We will check the following serviceability

Story Drift Check (Section 1.5.6.1)
Sway Check (Section 1.5.6.2)
Plan Irregularity Check (Section 1.3.4.2.2)

See this manual (Gazetted-BNBC-2020-Enhanced-file-published-by-Dr.-Khan-Mahmud-Amanat-Follow-Design-Integrity-for-Civil-Engg-info) for this adobe section To check for torsional irregularity in ETABS, you can calculate the ratio of the maximum story drift to the average story drift at two ends of the building. If the ratio is greater than 1.2, the structure is considered torsionally irregular.

Jnits:	As Noted H	lidden Columns: N	o Sort: N	one Story Max Ov	er Avg Drifts Y-Ecc') AND ((Dire	ection1 = 'Y')		
inter.	Story	Output Case	Case Type	Step Type	Direction	Max Drift mm	Avg Drift mm	Ratio
•	R	Ey	LinStatic		Y	8.194	6.121	1.33
	R	EY+Ecc	LinStatic		Y	7.437	5.846	1.27
	R	EY-Ecc	LinStatic		Y	9.126	6.454	1.41
	1F	Ey	LinStatic		Y	9.22	7.278	1.26
	1F	EY+Ecc	LinStatic		Y	8.365	7.002	1.19
	1F	EY-Ecc	LinStatic		Y	10.27	7.616	1.3
	GR	Ey	LinStatic		Y	1.42	0.71	
	GR	EY+Ecc	LinStatic		Y	1.289	0.644	
	GR	EY-Ecc	LinStatic		Y	1.582	0.791	

P-Delta analysis is nothing but analyzing a structure by applying loads on the deflected form of a structure. A deflected structure may encounter significant moments because the ends of the members have changed their position. Consider a column of length 'h', which is fixed at the bottom and free at the top.

P-delta Effects

It is the secondary effect on shear forces and bending moments of lateral force resisting elements generated under the action of vertical loads, interacting with the lateral displacement of building resulting from seismic forces.

Applied load is being modified for the 2^{nd} time Primary Moment = Lateral Load (Q) X Moment Arm (h) Secondary Moment = Gravity Load (P) X Significant Displacement (Δ)

 $Stability \ Coefficient, \theta = \frac{Secondary \ Moment, P\Delta}{Primary \ Moment, Qh}$

1.5.8 P-Delta Effects

The resulting member forces and moments and the storey drifts induced by P-Delta effects need not be considered when the stability coefficient (θ) remains within 0.10. This coefficient (described in Sec 2.5.7.9) may be evaluated for any storey as the product of the total vertical dead and live loads above the storey and the lateral drift in that storey divided by the product of the storey shear in that storey and the height of that storey.

2.5.7.9 P-delta effects

The P-delta effects on story shears and moments, the resulting member forces and moments, and the story drifts induced by these effects are not required to be considered if the stability coefficient (θ) determined by the following equation is not more than 0.10:

$$\theta = \frac{P_x \Delta}{V_x h_{sx} C_d} \tag{6.2.48}$$

Where,

- P_x = Total vertical design load at and above level *x*; where computing P_x , no individual load factor need exceed 1.0
- Δ = Design story drift occurring simultaneously with V_x
- V_x = Storey shear force acting between levels x and x 1
- $h_{sx} =$ Storey height below level x
- C_d = Deflection amplification factor given in Table 6.2.19

The stability coefficient θ shall not exceed θ_{max} determined as follows:

$$\theta_{\max} = \frac{0.5}{\beta C_d} \le 0.25 \tag{6.2.49}$$

Where, β is the ratio of shear demand to shear capacity for the story between levels *x* and *x* – 1. This ratio is permitted to be conservatively taken as 1.0.

Where, the stability coefficient θ is greater than 0.10 but less than or equal to θ_{max} , the incremental factor related to P-delta effects on displacements and member forces shall be determined by rational analysis. Alternatively, it is permitted to multiply displacements and member forces by $\frac{1}{(1-\theta)^2}$.

Where, θ is greater than θ_{max} , the structure is potentially unstable and shall be redesigned.

Where, the P-delta effect is included in an automated analysis, Eq. 6.2.49 shall still be satisfied, however, the value of θ computed from Eq. 6.2.48 using the results of the P-delta analysis is permitted to be divided by $(1 + \theta)$ before checking Eq. 6.2.49.

A **soft-story check** in ETABS is a way to determine if a building has a level that is more flexible than the levels above or below it. A soft story is a level that is less stiff than the levels above it, making it more vulnerable to lateral loads.

How to perform a soft-story check in ETABS?

Go to Display in ETABS

Select Structure Output

Select Other Output Items

Select Story Stiffness

What is the criteria for a soft story?

A level is considered a soft story if its lateral stiffness is less than 70% of the level above it. If there are at least three levels above, it is considered a soft story if its lateral stiffness is less than 80% of the average stiffness of the three levels above.

Model Diplorer	E	Ξ	60	F	Г	STO	R	Y CHECK	
Tables (i) Model	0 117	1	- 11 X V	-6				~	
a)-Optione			R	- c	D.	F	E.		
 Response Spectrum Function Time Hatory Functions 	1	SUBSCI	RIBE "DECODE	BD" YOUT	UBE CHAN	NEL FOR IMPORTANT TUTORI	ALS.		
8 - Load Cases	,				USING ST	TIFENESS			
Load Contentions Deplacements Load Contentions	3	Level	Stiffness	$\frac{K_1}{K_{r_1,-1}}$	Check	$\frac{K_{i}}{(KI_{i+1},K_{i+2},K_{i-1})/3}$	Check		
- Jord Orfts	4		kN/m or Kip/ft	0.7		0.0			
- Duphragin Center of	5	STTP	96.9334	222	1	4	1.24.1		
- Dapringin Mac/wyg	6	10F	142.9628	1.47	Ok		1.41		
Story Max/Avg Debla	7	9F	180.9299	1.27	Oi				
Slory Mex/Vivg Diffs	8	8F	201.5276	1.11	OR	3,44	OK		
(i) Reactions	2	TF	215.5869	1.07	Ok .	1.24	OK		
G. Stucture Results	10	£F	230.1923	1.06	01	1.15	OK		
G Frane Results	11	54	242.4602	1.05	CIR	1.12	Ck		
B Stel Results	15	46	258.0831	1.06	01	1.12	Ok	ALL AND	
(i) Wall Results	19	3F	280.8143	1.09	Ok	1.15	OK		
Desim	14	215	315.4621	1.12	OF	1.21	OK	S S S S S S S S S S S S S S S S S S S	
Table Sets	35	115	356.2919	1.13	01	1.25	OK		
	10	Gđ	2000.1057	3.97	OL	5,36	DK.		
	10.1	-			01		UK.		
	10				05	-			
	20				01		Ch.		
	21				01		Ch		
	22	2			- 00		OK		
	23				Ok		OK		
	24				Cli		OK		
	25				Ok.		Ck		

To check **story drift** in ETABS, you can create load combinations, then display the story response plot and select the maximum story drift.

Steps

- Create load combinations
- Go to Display
- Select Story Response Plot
- Select Show
- Select Max Story Drift
- Select EQ
- Select Step Number
- Select 1 for X direction and 2 for Y direction

Explanation

Story drift is the horizontal displacement of one floor relative to the floor below. The story drift ratio is the story drift divided by the story height.

V Name

Show

Name

Display Type

Case/Combo

Output Type

Load Type

Story Range

Bottom Story

Top Story

Global X Global Y

Legend

240

300

Drift, Unitless

360

420

480

540

600 E-6

Story Response

Story Range Indicates the story range for which response is displayed.

0

60

120

180

PB

Base

- ×

/ 🄃 💠

Serviceability Limit Check Video

Cost Effective Design

Week 15 Pages 145-147

Cost-Effective Design of Building

- Detecting the failure of member
- Solving the error in cost-effective way (reducing or increasing the member section/increasing concrete/steel grade)

Details Discussion on BNBC-2020/ASCE-7-05

Understanding the design procedure, guidelines and detailing

Final Design

Week 16 Pages 148-165

-Select Deign Groups stey Design Dettailing Options Tools Help ・・・ロン語を行きませ間相に I・ロ・ア・ロ・ー・ロ・ー・ 3-d I Steel Frame Delign Carabeta Frans Davige · C. Vess/Revice Preferences. T Campiting Brant Date View/Reutin Quanantes. Compacts Column Design Sefect Davige Lipigs son 30xel Just Design Galacet Dallight Committee Converte Name Design Procedure ... Datt Design/Check Siniff Thear Wall Design 10 Interactive Design - Canciete Stati Design Sturing Dearst Designun Live Loud Reduction Factoria Digitay Davige Info... DoB+Chi+HE R Set Laboral Displacement Targets-Charrys Design Setters. 56 abs Set Time Pariod Targets. Recet Design Section to Last Averyor 85 Intelly Analysis in Design Section ... 2 their, All Mainheet Parcel. Rest Al Oyenetes. Delete Deuge Reputt. E Concrete Design Group Selection Choose Groups List of Groups Design Groups AI Wallstack1 Add o Wallstack10 Wallstack11 <- Remove Wallstack12 Wallstack13 Wallstack14 Wallstack15 Wallstack16 Wallstack17 Wallstack2 Wallstack3 Wallstack4 OK. Cancel

100000

25- Start Design

27- Display Design Beam

• # 10 time from line comptation lines C ----Donah Display Tum Droke Tene republic faile False Type C Instan Westworthersteining Digiting Gallery E fitbiesen E Dow Vakan at Carinding Stature on Diagare (Industry) (Industry) 🙍 Alique Honologia 🛙 Constant Dage Scanfaits 1 Shee Bardoorag Educt 18 (Det **Kealu**

28- Display Design Info

29- Verify Analysis Vs Design Section

30- Design Slab

-VIEWS revise performance

List of Combinations		Design Combinations	
UDConS1 UDConS2 UDConS3 UDConS4 UDConS6 UDConS6 UDConS7 UDConS9 UDConS10 UDConS11 UDConS12 UDConS13 UDConS14	33 ec Show.	UDSIbS1 UDSIbS2 UDSIbS3 UDSIbS4 UDSIbS5 UDSIbS6 UDSIbS7 UDSIbS7 UDSIbS7 UDSIbS10 UDSIbS10 UDSIbS11 UDSIbS12 UDSIbS13 UDSIbS14	

32- Select Stories for Design

CON A

T

33- Start Design

34- Show Selected

35- Display Rebar

36- Display Punching Check

37- Display Crack Widths

The End

Column Design

Provided Area of Rebar for Column

Beam Design

Require Area of Rebar (in²) for Beam

Provided Area of Rebar for Beam

Two-way Slab Design

Shear Wall Design

Shear Wall Design with Boundary Element, Spandrel or Coupling Beam

Shear Wall Design

A **coupling beam** is a load-bearing element that connects two separate items, such as shear walls, to improve a building's structural integrity. Coupling beams are usually short and thick, and are often made of concrete.

Purpose

•Lateral force resistance

•Coupling beams increase the stiffness of a building, allowing it to resist lateral forces from wind or earthquakes

•Energy dissipation

•Coupling beams act as a source of energy dissipation during extreme stress, such as an earthquake

Importance

•Coupling beams are a critical element in concrete buildings

•Coupling beams help buildings maintain structural integrity under pressure

Examples

•Shear cores in tall framed buildings, which accommodate elevator shafts, stair wells, and service ducts

Coupling beam

Review and Problem solving class

Week 17

Special Courtesy: Assoc. Prof. Dr. Emre AKIN ADU Civil Eng. Dept. and Erbil polytechnique University

Dynamic Analysis

2.5.8 Dynamic Analysis Methods

Dynamic analysis method involves applying principles of structural dynamics to compute the response of the structure to applied dynamic (earthquake) loads.

2.5.8.1 Requirement for dynamic analysis

Dynamic analysis should be performed to obtain the design seismic force, and its distribution to different levels along the height of the building and to the various lateral load resisting elements, for the following buildings:

- (a) Regular buildings with height greater than 40 m in Zones 2, 3, 4 and greater than 90 m in Zone 1.
- (b) Irregular buildings (as defined in Sec 2.5.5.3) with height greater than 12 m in Zones 2, 3, 4 and greater than 40 m in Zone 1.

For irregular buildings, smaller than 40 m in height in Zone 1, dynamic analysis, even though not mandatory, is recommended.

2.5.8.2 Methods of analysis

Dynamic analysis may be carried out through the following two methods:

- (i) Response Spectrum Analysis method is a linear elastic analysis method using modal analysis procedures, where the structure is subjected to spectral accelerations corresponding to a design acceleration response spectrum. The design earthquake ground motion in this case is represented by its response spectrum.
- (ii) Time History Analysis method is a numerical integration procedure where design ground motion time histories (acceleration record) are applied at the base of the structure. Time history analysis procedures can be two types: linear and non-linear.

Continue...

 Table 6.2.16: Site Dependent Soil Factor and Other Parameters Defining Elastic Response

 Spectrum

Soil type	5	<i>T_B</i> (s)	<i>Tc</i> (s)	<i>T</i> ₂(s)
SA	1.0	0.15	0.40	2.0
SB	1.2	0.15	0.50	2.0
SC	1.15	0.20	0.60	2.0
SD	1.35	0.20	0.80	2.0
SE	1.4	0.15	0.50	2.0

Figure 6.2.26 Normalized design acceleration response spectrum for different site classes.

Continue...

 C_s = Normalized acceleration response spectrum, which is a function of structure (building) period and soil type (site class) as defined by Equations 6.2.35a to 6.2.35d.

$$C_{S} = S\left(1 + \frac{T}{T_{R}}(2.5 \eta - 1)\right)$$
 for $0 \le T \le T_{B}$ (6.2.35a)

$$C_s = 2.5 S \eta$$
 for $T_p \le T \le T_c$ (6.2.35b)

$$C_s = 2.5 \, s\eta \left(\frac{T_c}{T}\right) \quad \text{for} \quad T_c \leq T \leq T_D$$
 (6.2.35c)

$$C_s = 2.5 S \eta \left(\frac{T_C T_D}{T^2} \right) \quad \text{for} \quad T_D \le T \le 4 \text{ sec}$$
 (6.2.35d)

 C_s depends on *S* and values of T_B , T_C and T_D , (Figure 6.2.25) which are all functions of the site class. Constant C_s value between periods T_B and T_C represents constant spectral acceleration.

- S = Soil factor which depends on site class and is given in Table 6.2.16
- T = Structure (building) period as defined in Sec 2.5.7.2
- T_B = Lower limit of the period of the constant spectral acceleration branch given in Table 6.2.16 as a function of site class.
- T_c = Upper limit of the period of the constant spectral acceleration branch given in Table 6.2.16 as a function of site class

- T_D = Lower limit of the period of the constant spectral displacement branch given in Table 6.2.16 as a function of site class
- η = Damping correction factor as a function of damping with a reference value of η =1 for 5% viscous damping. It is given by the following expression:

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55 \tag{6.2.36}$$

Where, ξ is the viscous damping ratio of the structure, expressed as a percentage of critical damping. The value of η cannot be smaller than 0.55.

The anticipated (design basis earthquake) peak ground acceleration (PGA) for rock or very stiff soil (site class SA) is $\frac{2}{3}Z$. However, for design, the ground motion is modified through the use of response reduction factor R and importance factor I, resulting in $PGA_{rock} = \frac{2}{3} \left(\frac{ZI}{R}\right)$. Figure 6.2.26 shows the normalized acceleration response spectrum C_s for 5% damping, which may be defined as the 5% damped spectral acceleration (obtained by Eq. 6.2.34) normalized with respect to PGA_{rock} . This Figure demonstrates the significant influence of site class on the response spectrum.

Work Procedure

Continue...

Defining Earthquake Load

Continue...

Continue...

Thank you